Models of HIV during antiretroviral treatment

Christina M.R. Kitchen¹, Satish Pillai², Daniel Kuritzkes³, Jin Ling³, Rebecca Hoh², Marc Suchard¹, Steven Deeks²

¹ UCLA, ² UCSF, ³ Brigham & Women’s Hospital, Harvard Medical School
Road Map

- HIV 101
- HIV evolution and phylogenetic models
- What about resistance?
- Complex data in patients with high-level resistance, high viremia and stable CD4 counts
- Application to HIV-1 evolution under fusion inhibitor therapy
- Discussion
Definitions

- **Genotype**: sequence of virus either nucleotide or amino acid
- **Wild-type**: virus without resistance mutations, this is our reference strain
- **Nucleotide**: A, C, T, G
- **Codon**: Set of 3 nucleotides that codes for an amino acid
- **Amino acid**: building blocks of proteins
- **Phenotype**: behavior of the virus
- **Envelope (env)**: gene region involved with viral entry and target of fusion inhibitors
 - gp41: part of env and the target of fusion inhibitors
 - gp120: part of env and a target for the immune system
- **CD4**: Human immune cell and favorite target of HIV
- **Enfuvirtide (ENF)**: fusion inhibitor-disallows HIV entry into cell
- **Coreceptor**: secondary receptor for entry (CCR5 or CXCR4)
- **ART**: anti-retroviral therapy. Anti-HIV drugs
- **HAART**: Highly Active Anti-Retroviral Therapy. A therapeutic regimen consisting of at least 3 drugs in 2 different classes
HIV 101

Classes of drugs

- Reverse transcriptase inhibitors
 - Nucleoside/nucleotide
 - Non-nucleoside inhibitors
- Protease inhibitors
- Fusion inhibitors
- Integrase inhibitors
- Entry inhibitors
Natural History of HIV Infection

- Severity of illness is determined by amount of virus in the body (increasing viral load) and the degree of immune suppression (decreasing CD4 counts).
- Higher the viral load, the sooner immune suppression occurs.

What’s a Viral Load anyway?

- Amount of virus produced every day by viral replication (billions)
- Amount of virus in the body
- Amount of virus destroyed every day by the immune system (billions)
CD4 increases when viremia suppressed but a rapid rebound in virus when HAART stopped.
Motivating example: HIV-1 evolution under fusion inhibitors

- Enfuvirtide (ENF) is a fusion inhibitor that acts on env gp41
- Reserved for patients with high-level resistance
- Patients placed on optimized background + ENF
- Patients quickly developed ENF resistance
- ENF portion only of regimen interrupted (Partial Treatment Interruption (PTI))
- 16 weeks post PTI most patient strains were wildtype

Questions:
- Where does the wildtype come from?
 - Older archived strains?
 - Continued evolution (back-mutation)?
- Does the evolution of gp41 influence the evolution of gp120?
- Does drug resistance attenuate viral virulence?
Intra host HIV-1 evolution
Intra-host HIV evolution

- HIV exists as a quasi-species within a patient
- Intra-host phylogenies can be difficult to resolve
- Two approaches
 - Examine each patient independently and look for common patterns across patients
 - Concatenate the sequences together

1195 env sequences from 9 patients [taken from Rambaut et al 2004]
Trouble with current methods

- Want to know which evolutionary tree is more likely across all K subjects
- Want to know this across gene regions too
- Trouble with current methods:
 - Examine all patients independently
 - Ignores uncertainty
 - Difficult to draw conclusions across subjects
Trouble with current methods

- Want to know which evolutionary tree is more likely across all K subjects
- Want to know this across gene regions too
- Trouble with current methods:
 - Examine all patients independently
 - Ignores uncertainty
 - Difficult to draw conclusions across subjects
Trouble with current methods

- **Want to know** which evolutionary tree is more likely across all K subjects
 - Other method: concatenate patient sequences
 - Forces all patients to have the same evolutionary pressures and events

- **Solution**: Hierarchical Phylogenetetic Models (HPMs)
 - A balance between complete independence and concatenated models
Hierarchical Phylogenetic Models (HPMs)

Simultaneously reconstruct evolutionary histories from multiple patients by assuming that within-patient parameters θ_k are drawn from common across-patient distributions, characterized by population-level estimable parameters Φ:

- For θ_k: pooling/borrowing of strength leads to more efficient within-patient estimates (smaller variances)
- Helpful when one has short sequences with sparse phylogenetic information
Hierarchical Phylogenetic Models (HPMs)

Simultaneously reconstruct evolutionary histories from multiple patients by assuming that within-patient parameters θ_k are drawn from common across-patient distributions, characterized by population-level estimable parameters Φ:

- Across-patient distributions illuminate common patterns
- Estimate and test tendencies in Φ while allowing θ_k in individual patients to vary
Tree Results

gp41

gp120
Evolutionary Interactions

- Traditional log-linear models explore main effects and interactions in count data that form contingency tables.
- Testing for interactions generalizes the χ^2 test.

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>R</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>gp41</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>gp120</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

Counts are unknown
Evolutionary Interactions

- The tree counts (y_{rc}) are random (not observed)
- Estimated through sequence data via phylogenetic reconstruction with a twist

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>R</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>gp41</td>
<td># E</td>
<td># E</td>
<td># E</td>
</tr>
<tr>
<td>gp120</td>
<td># E</td>
<td># E</td>
<td># E</td>
</tr>
</tbody>
</table>

y_{rc}
Instead of assuming that the trees τ_{ij} are independent across patients and gene regions, we place a log-linear motivated prior on them through their summary statistics:

$$y_{rc} = \sum_i 1\{\tau_{ij} = r\}$$

$$y_{rc} \sim \text{Poisson (log linear mean)}$$

Results

- Cell counts were modeled as Poisson
- Bayes Factor for independence over dependence was 3
- Little evidence of evolutionary dependence
- Did not find a relationship with coreceptor usage
- Caveat: small sample size
Results

- Overall, the data across all patients and gene regions supported the Continued Evolution (Tree E) over the Re-emergence (Tree R) hypothesis.
- Bayes Factor=1428, p< 0.0001.
- If we look at gp41 alone, the Bayes Factor was 30.2
- Suggest pooling strengthened conclusions.
Implications

- 5/7 patients strongly support the Evolution tree in each gene region
- Results for gp41 and gp120 both support Evolution hypothesis
- Loss of resistance during ENF interruption often occurs due to ongoing viral evolution (and back-mutation), rather than emergence of archived virus.
- Particularly true in patients whose virus remained diverse or became more diverse during ENF therapy.
- Possible residual antiviral activity of ENF after interruption
- Suggests ongoing immunologic pressure against envelope in advanced disease, with the emergence of virus population that is immunologically more fit than previous generation of viruses.
Evolution of resistance and fitness

- Fitness effect based on circumstantial evidence
 - Resistant strains often exhibit reduced replication capacity in an in vitro assay
 - Virus typically reverts back to a wild-type drug susceptible genotype following treatment cessation
- No direct measurements of the effects of resistance evolution and fitness in vivo
Examined 18 patients with a history of enfuvirtide failure and who were no longer taking the drug

Added ENF for 4 weeks to an existing optimized stable regimen

454 based pyro-sequencing of HIV-1 gp41 performed on plasma on a weekly basis
Frequency resistant over time by patient
CD4 Counts over time
Sequence Data

- Over 38,000 unique sequences of gp41(!)
- Neighbor Joining trees using Tamura-Nei model of evolution
- Detect ultra-minority quasi-species
- Resistance associated mutations characterized according to IAS guidelines
Patient 3109, almost 1000 unique sequences.

- **Black-on T20**
- **Blue- wk 1-6**
- **Light blue wk 8-16**
- **Red: 16-34 weeks**
Results

- At baseline, frequency of resistance was low and quickly expanded when ENF was added.
- CD4 counts were highly positively correlated with ENF resistance.
- 454-based phylogenetic trees support a decrease in diversity following treatment cessation followed by an increase in diversity after 20 weeks.
Conclusions

- Data support the hypothesis that ENF resistance mutations attenuates the virus in vivo.
- Implicate decreased HIV-1 virulence (capacity to cause CD4 depletion) as the principal mechanism driving the sustained immunologic benefit to staying on ENF despite remaining viremic.
Acknowledgements

- CFAR
- amfAR
- Steve Deeks, UCSF
- Satish Pillai, UCSF
- Marc Suchard, UCLA
HIV Drug resistance

- The drugs work well for most people
- But not everyone...
HIV Drug Resistance

- HIV-1 resistance is the major obstacle to successful treatment
- Estimated that 76% of the HIV infected population in the US has resistance to at least 1 drug (Richman et al AIDS 2004)
Background

- Subset of patients who have high level of cross-resistant HIV
- Rates of immunological and clinical progression is lower in patients with drug-resistant HIV
- Changes in T-cell activation and/or viral fitness may lead to alterations in relationship between viremia and CD4 cell loss
Subjects

- 54 subjects from the Partial Controllers on Antiretroviral Therapy (PCAT) cohort
- Detectable viremia between 200-10,000 copies/ml
- Stable (but not fully suppressive) combination therapy
 - Enrolled before next generation ARVs were available
- Viral load, CD4 T cell count measured every 4 weeks
- Immune activation (CD38/HLA-DR) measured every 16 weeks
Patients have detectable drug-resistant viremia but stable CD4 counts
Log viremia and log CD8 activation over time
Methods

- Multiple Imputation for missing at random data (MCMC method)
- Nonlinear mixed effects models with a random intercept were used to fit the main models
- Spectral decomposition was used to ascertain the presence of an oscillatory signal in a subset of patients
Results-all patients

- Median baseline CD4 counts was 303 cells/mm³
- Median baseline viremia was 3.3 log copies/ml
- 74% failing with a PI regimen
- Patients on boosted regimen has an increase of 20 cells/mm³ while others had an average decrease of 33 cells/mm³
- CD8 activation strongly associated with viremia over time (p<0.01)
- CD4 activation was a strongly associated with CD4 counts over time (p<0.001) controlling for viremia
Subset analysis

- A subset of patients (N=11) had more extensive analysis
- Subjects had on average 25 time points (range 20-28) over up to 120 weeks (range 95-120) follow up
- No significant difference between the subset and main dataset in clinical parameters.
- Spectral analysis can detect cyclical patterns in time-series data using a Fourier transform.
 - Time series decomposed as a mixture of sine functions
 - Examined viremia, CD4 / CD8 activation and viremia
Results - Spectral analysis

- Spectral analysis showed a significant oscillatory signal in CD8 and CD4 activation as well as viremia.
- Complex forms of mixtures of 0-7 sine waves
Nonlinear mixed models-subset

- CD8 activation was a significant predictor of viremia over time (p=0.0007)
- Patients whose maintenance regimen did not include a PI had a stronger oscillatory signal (p=0.04)
Conclusions

- Immune activation is a strong predictor of immunologic outcomes in stable patients with highly resistant HIV.
- The oscillatory relationship between virus and T cells is most readily explained by a shift in predator-prey dynamics.
- These data support prior conceptual models suggesting that reductions in viral fitness will lead to paradoxical CD4 outcomes by preserving target cells.
This work was supported in parts by grants UCLA Center for AIDS Research (AI28697), the UCSF CFAR (MH59037, AI27763), the NIAID (AI052745, AI069994), and UCSF Clinical and Translational Science Institute(UL1 RR024131-01).
Can long-term suppression restore CD4 counts to a normal level?

- Normal level defined to be a CD4+ T cell count > 500 cells/mm3
- Antiretroviral therapy has ability to fully restore CD4 counts, is this true for all patients who can maintain suppression?
- Not been tested with long-term follow up
Inclusion Criteria

- Achieve suppression < 1000 copies/ml within first 48 weeks of therapy initiation
- Maintain suppression < 1000 copies/ml for at least 4 years
- Patients allowed to modify antiretroviral regimen as long as suppression < 1000 copies/ml
CD4 T-cell counts over time in patients with 10 years of continual suppression and had a pre-therapy CD4 count < 200 cells/mm³
Statistical Methods-longitudinal data

- Spline-smoothing regression fit due to potential non-linearity over time
- Found to have 1 knot at 4 years
- Piece-wise linear with knot at 4 years
- Mixed-effects model
- Other cofactors: Baseline CD4 count, nadir CD4 count, CD4 count at year 4, hepatitis C co-infection. Use of boosted protease regimen, year of HAART initiation, timing of initial response to HAART, pre-HAART exposure to antiretrovirals, proportion of visits with “blips”.
- CD4 square root transformed.
- Fit using R
Time to immune reconstitution analysis

- Fit using the method of Kaplan Meier
- Endpoint: immunologic restoration, defined as 2 consecutive CD4 counts > 500 cells/mm3
- Strata compared using log rank test
 - Year 4 CD4 count
 - Baseline CD4 count
 - Nadir CD4 count
Results

- 151 (41%) patients had CD4 < 500 at year 4
- 61/151 (40%) eventually had increases to > 500 cells/mm3
- 0/48 patients who started with CD4 < 200 cells at baseline achieve immunologic restoration after 10 years of suppression
Average CD4 slopes after year 4

- Overall change in CD4 slope after year 4 was 17 cells/mm³ per year (95% CI: 11-21 yr)
- If stratify by year 4 CD4 count:
 - < 350: 21 cells (12-31)
 - 350-499: 17 cells (6-28)
 - > 500: 11 cells (3-17)
- 19% of CD4 < 350 has slope not different from zero
- 27% of CD4 350-500 had slope not different from zero
Time to immunologic restoration by year 4
CD4 count

![Graph showing the probability of immunologic restoration over months on HAART for different CD4 count categories: N=216 for CD4 count <350, N=76 for 350-500, and N=74 for >500.](image)
Time to immunologic restoration by baseline CD4

- 95% of patients with a pre-HAART baseline > 300 cells were able to achieve immunologic restoration
- 25% of patients with a baseline CD4 between 100-200 cells did NOT achieve restoration
- 44% of patients with baseline CD4 > 100 did NOT achieve restoration
Time to immunologic restoration by baseline CD4 count

- N=60
- N=50
- N=67
- N=72
- N=101
Percentage of patients with immunologic restoration by CD4 nadir

![Graph showing percentage of patients with CD4+ T cell count >500 cells/mm³ over years of HAART, divided by initial CD4 cell count categories: >350 cells/mm³ (closed black circles), 200-350 cells/mm³ (gray open circles), and <200 cells/mm³ (white open circles).](image)
Discussion

- There appears to be a threshold for which the immune system cannot fully recover
- Suggests initiation of therapy before CD4 decline below 200
- Small subset of people who are not able to achieve immunologic restoration
Caveats

- **Selection bias**
 - Only patients with durable long-term suppression included

- Level of suppression rather high. Now can get is < 50 copies/ml

- Intermittent viremia not significant in models

- Unmeasured confounders

- Immune activation, other co-infections
 - Age was a significant predictor of CD4 decline over time